
Supplementary methods

Method comparisons: description of methods

We compare EPoC to several other methods briefly described here.

EPoC, as described in the article, estimates the CNA-driven network G. However, the EPoC

algorithm can also be applied to estimate the transcriptional network A by simply replacing

the CNA data matrix ∆U with the mRNA data matrix ∆Y in Step 3 of the algorithm. We

denote this approach by EPoC A.

glasso (Friedman et al., 2008) estimates the (sparse) inverse correlation matrix from a

set of data. The inverse correlation matrix reflects the direct dependencies, whereas the

correlation matrix includes both direct and indirect interactions. Under our model for-

mulation, ∆Y ' −A−1∆U , and so the correlation matrix of the mRNA expression levels

ΣY Y = A−1ΣUU(A−1)T , or equivalently, the inverse correlation matrix Σ−1
Y Y = AΣ−1

UUA
T . The

estimate of Σ−1
Y Y thus generates an undirected version of A. Similarly, GeneNet is geared

toward finding the direct links between transcripts using the inverse correlation matrix, but

employs a different form of shrinkage or elimination of indirect effects from glasso (Opgen-

Rhein & Strimmer, 2007). ARACNE uses a mutual information criterion to separate directly

dependent transcripts from those dependent only through other transcripts (Margolin et al.,

2006). We use publicly available GeneNet and ARACNE software packages in our compari-

son, and our matlab/C implementation of glasso optimized for speed and verified to agree

with the published glasso R-package.
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Note, EPoC A can be applied to estimate the transcriptional network A using either (a)

the mRNA data only, or (b) the mRNA and CNA data. Defining log-transformed and zero-

centered mRNA expression and CNAs as ∆yi and ∆ui, i = 1, . . . , n. For (a) we assume

a transcript model aii∆yi +
∑

j 6=i aij∆yj + ri = 0, where aij denote the transcriptional

interactions and ri the non-CNA related impact on transcription (”noise” in our model).

That is, we regress ∆yi on other mRNA levels ∆yj for all genes i = 1, · · · , n. For (b) we

use model aii∆yi + ∆ui +
∑

j 6=i aij∆yj + ri = 0, and first obtain the residuals of a regression

of each mRNA transcript on its CNA (essentially on aii∆yi + ∆ui), then regress these

residuals on the mRNA levels of all other mRNA transcripts. The robustness performance

(Figure 6A) of EPoC A is slightly worse in case (b) compared with (a). This supports

that the appropriate manner in which to include CNA profiles in the network modeling of

mRNA expression is through the CNA-driven network formulation (EPoC G). Since glasso,

ARACNE and GeneNet networks are based on pairwise (partial) correlations or similar

dependency measures, it is not as easy to include CNA data directly in these approaches.

The cross-correlation matrix corresponding to model (b) above is not symmetric as the

pairwise interaction models assume. Applying the methods directly to the residuals in (b)

worsens the performance of all three methods (as expected since this does not correspond

to a mechanistic model for transcription and biological information in the residuals is much

reduced compared with the original mRNA data).

eQTL is a standard class of methods to associate SNPs to mRNA levels. We adapt previous

work in SNP-eQTL analysis (e.g. Stranger et al. (2005, 2007a,b)), here replacing SNPs with

CNAs. We thus apply univariate linear regression of the gene expression levels on the copy

number signals, followed by calculation of the nominal p-values for the association, followed

by a p-value cutoff to obtain a set of eQTL significant associations. We obtain networks of

different sizes by sweeping the p-value cutoff between 10−16 and 1. (For our robustness tests,
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described below, we note that the permutation criterion in Stranger et al. (2007a,b) gives a

nominal p-value cutoff of around 10−4).

We set up the method remMap as developed in Peng et al. (2008). This method involves

several pre-processing steps. First, the CNA data is converted to CNA-intervals using fixed

order clustering. Second, a set of mRNA–mRNA interactions are identified by running a

method called space, based on a partial correlation analysis of the mRNA data (similar

to glasso). The number of mRNA-mRNA interactions are selected using a power-law as-

sumption (on the distribution of degree=number of links per node). In Peng et al. (2008),

a power of 2 is deemed reasonable for the data and space is run to find a mRNA-mRNA

network that best matches this assumption. Third, for each mRNA transcript we now build

a model based on other transcripts and CNA interval data. For transcript i, mRNA tran-

scripts j that have been identified to be linked to i using space are automatically included,

and those that have not identified are excluded. The CNA interval that contains transcript

i is also automatically included in the model. remMap then uses a combined L1 and L2

elastic net penalty to select a subset of the other CNA intervals to be linked to transcript

i. An additional penalty encourages the same CNA interval to appear as predictors for all

transcripts (”master predictors”). The method can therefore be thought of as a hybrid of

EPoC A/G analyzed for genomic regions. We use the publicly available space and remMap

software packages for our comparisons. In the technical comparison we apply the methods

to a random subset of 500 genes. Therefore, the fixed order clustering into genomic regions

is not included in the comparative analysis (since genomic location makes little less sense in

a random gene set). Since this eliminates a processing step from remMap, the corresponding

results in Figure 6A are likely optimistic (ignoring instabilities in the estimation of genomic

intervals).

3



LirNet (Lee et al., 2009) is designed to derive a transcriptional module network from com-

bined SNP and mRNA data. Given a set of transcript clusters and a set of possible reg-

ulators, this algorithm identifies SNP and mRNA regulators for each cluster by elastic net

regression (combined L1 and L2 penalties). An additional feature of the algorithm is that

the L1 penalties can be learnt from annotation features (e.g. the position of the SNP inside

the gene). We replace SNPs with CNAs and adapt the basic algorithm to apply LirNet

to the TCGA data as follows; (i) we define k clusters by k-means clustering of the tran-

script data (Lee et al., 2006); (ii) we assign the same set of possible regulators as for EPoC

(see main text); (iii) we run LirNet, using the author’s own software distribution, in ”flat

mode”, for a given L1, L2 set of penalties; and, (iv) after each run, re-assign each gene

to the cluster that best explains its profile. This is repeated until convergence. The above

procedure thus depends on choosing the parameters k (cluster number), L1 and L2. Using

L1 to control network size in Figure 6, we tested all possible constellations of k = 1, 2, 3, ...

and L2 = 1, 2, 3, 4, 5, 10, 15, 20, .... For Figure 6 (network consistency and PPI matching),

we obtained maximum consistency for k = 5, L2 = 20. For supplementary Figure 2 (predic-

tion), we obtained minimum prediction error for k = 24 and L2 = 4. We note that the use of

priors can improve LirNet prediction performance (Lee et al., 2009). To try to compensate

for the use of flat LirNet priors (i.e. not including such prior information), we modulated

the consistency test (Figure 6A) so that the same initial clustering was used for the A and

B datasets, which introduces a strong bias in favor of LirNet consistency, since the initial

clusters are identical. While LirNet performs less well in the prediction tests than remMap

and EPoC, we speculate that this could be compensated by using LirNet with appropriate

informative priors. We defer such explorations to future work.

Sparse canonical correlation has also been put forth as an alternative non-network ap-

proach to integrating CNA and mRNA data. As an interesting side-note, while the sparse
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SVD of G produces biomarker modules, where a subset of CNAs are linked to a subset of

mRNAs, this is not the same as a sparse canonical correlation (CCA) of the CNA (U) and

mRNA (Y) data (Waaijenborg et al., 2008; Witten et al., 2009). SVD of G focuses on CNA

as the input or driver of mRNA changes. In contrast, sparse canonical correlation treats the

mRNA and CNA data symmetrically, finding a sequence of linear combinations of a subset

of CNAs that are maximally correlated with linear combinations of a subset of mRNAs.

The CCA components are obtained from eigenvalue decompositions of Σ−1
UUΣUY Σ−1

Y Y ΣY U

(input CNA) and Σ−1
Y Y ΣY UΣ−1

UUΣUY (output mRNA) respectively, where ΣUU denotes the

CNA–CNA covariance matrix, ΣY Y the mRNA-mRNA covariance, and ΣUY = ΣT
Y U the

cross-variance between CNA and mRNA. Under our model formulation Y = GU + Γ where,

assuming U and Γ uncorrelated, ΣY Y = GΣUUG
T + ΣΓΓ and ΣUY = ΣUUG

T . Here, ΣΓΓ is

the covariance of the noise term. Plugging in these expressions into the canonical correlation

eigenvector problems above, it is easily seen that the canonical correlations do not generally

agree with the SVD of G (eigenvectors of GGT and GTG). Complete agreement is possible

in pathological cases, such as when both ΣUU and ΣΓΓ are factors of the identity matrix (or

having eigenvectors coinciding with the right and left SVD components of G respectively).

If ΣUU and ΣΓΓ differ from these special cases (e.g. identity matrices, which corresponds to

completely uncorrelated CNAs and/or noise), canonical correlation and SVD of G can differ

substantially. In our toy example, SVD of G correctly identifies CNA biomarkers and mRNA

responders (Figure 1C). In contrast, CCA is susceptive to, and reflective of, the structure

of ΣΓΓ in either input or output components, or both. As structure in the noise term is a

realistic concern in our glioblastoma data set, where ΣΓΓ captures all the mRNA–mRNA

dependencies that are non-CNA related, we do not consider CCA further in this paper, but

reserve such comparisons for future work centering on network decompositions related to

survival.
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Method comparisons: setup and results

The setup for the comparative analysis of the methods is summarized here. We first con-

struct two replicate versions of the TCGA dataset, A and B. A comprises array-CGH and

Agilent array measurements from MSKCC; B comprises Agilent array-CGH profiles and

Affymetrix U133A mRNA profiles generated at Harvard and Broad Institute, with both

A and B consisting of 146 individually matched samples. For 100 iterations, we select a

mixture of the 250 genes with the highest mRNA variance in one of the datasets, plus an

additional random 250 genes from the 10672 genes studied. This way, we get a set of genes

that can be analyzed also by the slowest methods (remMap, glasso, ARACNE), and which

introduces a bias in favor of the methods that uses mRNA data only. We subsequently run

each method for each of a series of parameter values corresponding to stringency (glasso ρ,

ARACNE dpi, GeneNet significance threshold, EPoC λ, remMaP L1 penalty, LirNet number

of clusters and L2 penalty, and eQTL p-value cutoff), resulting in a series of networks of

different sizes. These are analyzed with respect to network agreement between datasets A

and B using Kendall’s W .

In Figure 6A, the robustness of network estimation using EPoC is compared with alternative

methods. We use Kendall’s W to compare the agreement between networks estimated on

two independent data sets using EPoC G, EPoC A, glasso, ARACNE, GeneNet, eQTL,

remMap and LirNet. EPoC G is clearly superior in terms of robust network estimation for

most network sizes. For very large networks, glasso is somewhat better. GeneNet exhibits

near-constant performance across the full range of network sizes, and performs the worst

of the methods compared, with essentially random agreement between networks. Finally,

ARACNE has a strong tendency to produce very connected networks even at maximum

stringency settings, and its performance on small networks is hard to assess. The obtained
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results suggest that ARACNE performs slightly better than GeneNet.

EPoC A and remMap exhibit very similar performance, and is overall worse than EPoC G.

The reason for this is that transcriptional interactions (the A matrix of EPoC A, the space

networks for remMap) are difficult to estimate due to the strong mRNA-mRNA correlations in

the data. In fact, examining just the robustness of space we find that on average Kendall’s

W is 0.8. That is, 1 − W = 0.2 of the level of the remMap curve in Figure 6A can be

attributed to just the space pre-processing step, with an additional 0.2-0.3 coming from the

instability of estimating the G component of remMap. glasso performs slightly better than

EPoC A, but worse than EPoC G. However, as mentioned above, glasso is restricted to

produce undirected (non-causal) networks. In addition, we find that glasso is much slower

than EPoC A and glasso networks larger than 1500 genes are intractable in practice.

LirNet and eQTL perform worse still in terms of robustness. LirNet, like remMap suffers from

instability introduced in the pre-processing step where modules are estimated. eQTL (as

mentioned in Results) performs worse than EPoC largely due to being based on a univariate

modeling of mRNA–CNA couplings.

Note, all methods benefit from the use of standardized mRNA amplitudes, and those results

are the ones shown in Figure 6A.

From a practical stand-point, we think it valuable to note that the algorithmic speed of

the methods vary greatly. In our simulation setup we use 500 genes such that even the

slowest methods can be compared. For this number of genes, EPoC takes a few seconds

to run (3–6s) whereas glasso and GeneNet take a factor 5-10 longer. Beyond 1500 genes,

glasso takes a prohibitively long time to run. remMap takes on average 40–60 seconds to
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estimate networks based on 500 genes and does not scale to the full data set due to memory

requirements and speed. For example, on 3000 genes the space step alone takes more than

one hour. LirNet is slightly faster than remMap. ARACNE takes on average 100–200 seconds

to estimate networks for 500 genes and becomes prohibitively slow to run on the full data

set. Finally, EPoC takes about 90 second to run on the full set of 10672 genes. (All run

times were obtained on a desktop computer, Mac Pro, 2x2.8 GHz quad-core Intel Xeon).

We compare predictive performance of EPoC, remMap and LirNet using the same simula-

tion setup for 500 genes as described above. These methods were chosen to compare since

they produce natural prediction models as algorithmic output. For EPoC prediction we fit

EPoC G and EPoC A on a training set of data, and predict using model averaging. remMap

generates predictions in a similar fashion since the elements of the A is obtained first through

space, and then coefficients estimates for the A and G components of prediction are obtained

using elastic net (Supplementary Figure 2)

For pathway comparisons, we download Reactome, IntAct, and HPRD from Pathway-

commons.org, and map identifiers to the 10672 genes in our dataset. We subsequently

calculate the undirected shortest path Rij for all gene pairs (i,j) in these databases using

Johnson’s algorithm (Johnson, 1977). For a given network G, we subsequently calculate the

enrichment (relative proportion) as:

P (Rij = k | i and j are connected in G)

P (Rij = k | i and j are connected in a permutation of Gpermuted)
,

calculated across nondiagonal elements (i 6= j) and where Gpermuted is generated by random

permutation of the nondiagonal G elements (1000 simulations) (Figure 6B). For Figure 6,

k = 2 is used.
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Finally, we quantify the similarities of the different methods as follows. We apply and

optimize each method to find a network of fixed size (here 500 connections). We then

use Kendall’s W to compute method-method structural similarities. We apply hierarchi-

cal clustering to these results and produce a method-dendrogram (Supplementary Figure

1). The figure shows clear structural separation between transcriptional mRNA-based net-

works (glasso, EPoC A, ARACNE and GeneNet) and the genotype-driven networks (Lir-

Net, eQTL, remMap and EPoC G). Gene content comparison show a complementary set

of processes identified in mRNA-based networks compared with genotype-driven networks

(Supplementary Figure 1).

Supplementary experimental information: Primer sequences

GAPDH Forward primer 5′-GAA GGT GAA GGT CGG AGT C-3′

GAPDH Reverse primer 5′-GAA GAT GGT GAT GGG ATT TC-3′

NDN Forward primer 5′-ACTGAGGAGTTCGTCCAAATGAAT -3’

NDN Reverse primer 5′-TGATTTGCATCTTGGTGATTTCG -3′

CPNE8 Forward primer 5′-ACCCCTACTGTGATGGCATTGA-3′

CPNE8 Reverse primer 5′-GGGAGCCATCCTTTACAGAAGAAG-3′

FGF9 Forward primer 5′-ACCACAGCCGATTTGGCATT -3′

FGF9 Reverse primer 5′-CTTCTCATTCATCCCGAGGTAGAG -3′

KCHN8 Forward primer 5′-CCGAGAAGGTCATGAGAGTGATGT -3′

KCHN8 Reverse primer 5′-TGGGAGTCGCTTGTTGATGTTG -3′
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Supplementary figure 1: Differences in gene content between EPoC G and A

networks. Comparison of top the CNA-driven (A), transcriptional (B) and glasso (C)

networks. Top three enriched GO process terms highlighted (the corrected Fisher’s test p-

values ( < 10−9 for all terms shown) are used as a ranking principle and not as evidence

of network links). In the CNA-driven network, we detect numerous genes involved in cell-

cell signaling, and developmental processes, whereas the transcriptional network contains

a large number of associated with inflammatory and cell cycle associated processes. The

glasso method, which shows robustness results that are comparable to EPoC (Figure 6A)

produces a solution which has similar gene content to the EPoC A solution (lower left).

(The glasso network is computed from a random subset of 2000 genes, since this method

does not scale to 10000+ genes). (D) Hierarchical clustering of network solutions (single

linkage, 1-fractional network overlap as distance); note that EPoC A networks group with

transcriptional network methods (ARACNE and GeneNet) and EPoC G groups with remMap

and similar genotype-based methods.
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Supplementary figure 2: Prediction performance. The results of 10-fold cross-

validation test of EPoC, remMap and LirNet with respect to prediction of mRNA levels

from mRNA and CNA features selected by each methods (Methods). Each box shows the

range of prediction errors across each of the 10 simulations, demonstrating similar perfor-

mance of the three methods on the TCGA glioblastoma data. The simulation was done on

500 gene subsets due to speed limitations of remMap (Methods). As an example, scatter plots

of measured (X axis) and predicted (Y axis) mRNA levels, with Pearson correlation coeffi-

cient r at a similar level. Each method was optimized with respect to lasso (L1) and ridge

(L2) parameters. LirNet, which is based on transcriptional modules, was also optimized for

different module numbers for optimal performance.
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